Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cancer Manag Res ; 14: 3437-3448, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36536823

RESUMO

Objective: To develop and validate models for predicting distant metastases in patients with solid lung adenocarcinomas using 3D radiomic features, 2D radiomic features, clinical features, and their combinations. Methods: This retrospective study included 253 eligible patients with solid adenocarcinoma of the lung diagnosed at our hospital between August 2018 and August 2021. 3D and 2D regions of interest were segmented from computed tomography-enhanced thin-slice images of the venous phase, and 851 radiomic features were extracted in each region. The Least Absolute Shrinkage and Selection Operator (LASSO) algorithm was used to select radiomic features and calculate radiomic scores, and logistic regression was used to develop the model. Development of a 3D radiomics model (model 1), a 2D radiomics model (model 2), a combined 3D radiomics and 2D radiomics model (model 3), a clinical model (model 4), and a comprehensive model (model 5) for the prediction of distant metastases in patients with solid lung adenocarcinomas. Nomograms were drawn to illustrate model 5, and receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA) were used for model evaluation. Results: The AUC (area under the curve) of model 1, model 2, model 3, model 4, and model 5 in the test set was 0.711, 0.769, 0.775, 0.829, and 0.892, respectively. The Delong test showed that AUC values were statistically different between model 5 and model 1 (p=0.001), and there was no statistical difference in AUC between the other models. Based on a comprehensive review of DCA, ROC curve, and Akaike information criterion (AIC), Model 5 is demonstrated to have better clinical utility, goodness of fit, and parsimony. Conclusion: A comprehensive model based on 3D radiomic features, 2D radiomic features, and clinical features has the potential to predict distant metastasis in patients with solid lung adenocarcinomas.

3.
Front Oncol ; 12: 949111, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505773

RESUMO

Objective: Based on pretherapy dual-energy computed tomography (DECT) images, we developed and validated a nomogram combined with clinical parameters and radiomic features to predict the pathologic subtypes of non-small cell lung cancer (NSCLC) - adenocarcinoma (ADC) and squamous cell carcinoma (SCC). Methods: A total of 129 pathologically confirmed NSCLC patients treated at the Second Affiliated Hospital of Nanchang University from October 2017 to October 2021 were retrospectively analyzed. Patients were randomly divided in a ratio of 7:3 (n=90) into training and validation cohorts (n=39). Patients' pretherapy clinical parameters were recorded. Radiomics features of the primary lesion were extracted from two sets of monoenergetic images (40 keV and 100 keV) in arterial phases (AP) and venous phases (VP). Features were selected successively through the intra-class correlation coefficient (ICC) and the least absolute shrinkage and selection operator (LASSO). Multivariate logistic regression analysis was then performed to establish predictive models. The prediction performance between models was evaluated and compared using the receiver operating characteristic (ROC) curve, DeLong test, and Akaike information criterion (AIC). A nomogram was developed based on the model with the best predictive performance to evaluate its calibration and clinical utility. Results: A total of 87 ADC and 42 SCC patients were enrolled in this study. Among the five constructed models, the integrative model (AUC: Model 4 = 0.92, Model 5 = 0.93) combining clinical parameters and radiomic features had a higher AUC than the individual clinical models or radiomic models (AUC: Model 1 = 0.84, Model 2 = 0.79, Model 3 = 0.84). The combined clinical-venous phase radiomics model had the best predictive performance, goodness of fit, and parsimony; the area under the ROC curve (AUC) of the training and validation cohorts was 0.93 and 0.90, respectively, and the AIC value was 60.16. Then, this model was visualized as a nomogram. The calibration curves demonstrated it's good calibration, and decision curve analysis (DCA) proved its clinical utility. Conclusion: The combined clinical-radiomics model based on pretherapy DECT showed good performance in distinguishing ADC and SCC of the lung. The nomogram constructed based on the best-performing combined clinical-venous phase radiomics model provides a relatively accurate, convenient and noninvasive method for predicting the pathological subtypes of ADC and SCC in NSCLC.

4.
Front Oncol ; 12: 926121, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439470

RESUMO

Background: The risk of gastrointestinal stromal tumor (GIST) in combination with other primary malignancies is high, which occurs before and after the diagnosis of GIST. Primary pulmonary T-cell lymphoma is a rare type of non-Hodgkin lymphoma. Case presentation: We report a 53-year-old male patient who was admitted to our hospital with fever, cough, and expectoration for 2 weeks. Chest computed tomography (CT) showed a cavitary mass in the left lower lobe with multiple nodules in the upper lobes of both lungs. The patient had a history of surgery for small intestinal stromal tumors and was treated with oral imatinib after surgery. Lung biopsy was diagnosed as lymphomatoid granulomatosis, tending to grade 3. The pathological diagnosis was corrected by surgery and genetic testing for lung non-Hodgkin CD8-positive cytotoxic T-cell lymphoma with Epstein-Barr virus (EBV) infection in some cells. After multiple chemotherapies, the CT scan showed a better improvement than before. The patient is still under follow-up, and no tumor recurrence has been found. Conclusion: Patients with a history of GIST should be monitored for other malignancies. The clinical symptoms and imaging examinations of primary pulmonary T-cell lymphoma are not characteristic, and the definite diagnosis still depends on pathological examination. The patient was treated with the CHOP chemotherapy regimen after the operation, the curative effect was good.

5.
Front Oncol ; 12: 924055, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147924

RESUMO

To develop and validate a predictive model based on clinical radiology and radiomics to enhance the ability to distinguish between benign and malignant solitary solid pulmonary nodules. In this study, we retrospectively collected computed tomography (CT) images and clinical data of 286 patients with isolated solid pulmonary nodules diagnosed by surgical pathology, including 155 peripheral adenocarcinomas and 131 benign nodules. They were randomly divided into a training set and verification set at a 7:3 ratio, and 851 radiomic features were extracted from thin-layer enhanced venous phase CT images by outlining intranodal and perinodal regions of interest. We conducted preprocessing measures of image resampling and eigenvalue normalization. The minimum redundancy maximum relevance (mRMR) and least absolute shrinkage and selection operator (lasso) methods were used to downscale and select features. At the same time, univariate and multifactorial analyses were performed to screen clinical radiology features. Finally, we constructed a nomogram based on clinical radiology, intranodular, and perinodular radiomics features. Model performance was assessed by calculating the area under the receiver operating characteristic curve (AUC), and the clinical decision curve (DCA) was used to evaluate the clinical practicability of the models. Univariate and multivariate analyses showed that the two clinical factors of sex and age were statistically significant. Lasso screened four intranodal and four perinodal radiomic features. The nomogram based on clinical radiology, intranodular, and perinodular radiomics features showed the best predictive performance (AUC=0.95, accuracy=0.89, sensitivity=0.83, specificity=0.96), which was superior to other independent models. A nomogram based on clinical radiology, intranodular, and perinodular radiomics features is helpful to improve the ability to predict benign and malignant solitary pulmonary nodules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...